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Abstract—The reliability of autonomous robots depends largely
on their ability to interpret sensors correctly in real time.
Similarly, one very important aspect in Botball is being able
to analyze the robot’s surroundings based on sensor data, which
are often noisy and inconsistent due to environmental variability.
Sensor calibration is a common approach for generating accurate
and reliable sensor readings. However, many of the current
calibration techniques we use are not effective enough. In this
paper, we evaluate several calibration algorithms and proposed a
new clustering-based algorithm, conducting experiments to show
that the proposed new algorithm is effective in calibrating sensor
data. We also proposed enhancements to this algorithm to handle
generic and extreme use cases. In this paper, we use the tophat
sensor’s identifying black tape as an example for experiments
and analysis. However, this solution can be used in any sensor
calibration and in any situation that requires clustering such as
color, size, distance, etc.

I. INTRODUCTION

The success of autonomous robotics depends on how well
a robot perceives and understands its environment. Sensors
are a crucial part in allowing robots to learn its position,
speed, operation state, etc. The robots then make intelligent
decisions based on the data from the sensors. There are many
real world examples of robots relying heavily on sensors
for operation, such as the self-driving car Waymo[1] and
Amazon’s Kiva, an Autonomous Mobile Robot (AMR)[2].
However, physical sensors almost never read perfect data.
Reading errors can be caused by various factors: environ-
mental impacts such as lighting, humidity, and temperature,
manufacturing defects/variations, wearing-out of the sensor,
measurement noise, the set-up of the surroundings of the robot,
etc[3]. Therefore, it is impossible for sensor reading noise and
bias to be eliminated, and the errors will cause the robot to
make incorrect decisions if not addressed properly. A widely
used approach to solve this problem is sensor calibration,
which is common in industries involving autonomous robots
such as surgical, self-driving, manufactory, aerospace, and
other robots from various areas. The process of “calibration”
involves systematic data processing to fix errors, which results
in accurate and reliable sensor readings.

When it comes to Botball, there are many places we need to
calibrate the sensor data and decide on a threshold. The most
common use cases are:

• Tophat sensor: When do we see a black line or a white
area?

• ET sensor: When do we see an object?
• Camera: Which color do we read? Is the object large or

small?
• Linear Slide: When used to convert analog signals into

discrete signals, which discrete signal do we see?

A reliable technique to calibrate sensor readings can benefit
all of these scenarios. Among these use cases, identifying
the black line is the most critical and frequent scenario in
Botball because it is the most effective way for a robot to
follow a driving path and identify its location using the lines.
In the North California 2025 regional tournament, our team
LACT 0399 had a failed seeding run because one of our
robots could not find a black line and got stuck, blocking
the other robot and causing us to score 7 points. This accident
motivated us to investigate this problem. Though we know
that this accident was a corner case, one out of thousands of
runs, robot reliability is crucial in many ways-both in Botball
and professional industries. A single failure could cause a loss
both financially and in human lives. We aim to improve the
reliability of our robots as much as possible so that in real life
we can achieve higher safety and security. In the rest of this
paper, we will focus on the process of calibrating the tophat
sensor to identify “BLACK”, in addition to analyzing various
techniques and identifying the optimal solution. As mentioned
earlier, the same technique can be applied to the ET sensor,
camera, linear slide, and other sensors as well.

II. EXPERIMENT SETUP

First, we tried to analyze the accident. One thing many
of our team members noticed was the lighting, as it was
not as bright as the lighting on the table we used during
practice. However, the way a tophat sensor works is that it
emits infrared (IR) light to generate readings, which is not
affected by lighting[4]. Therefore, lighting should not be an
issue and will not be a part of this experiment.

The next possibility is the sample data used to calibrate
the robot. The samples may not be evenly distributed between
“BLACK” and “WHITE”. When the samples are extremely
skewed, it could affect how the threshold of “BLACK” is
determined. If the threshold for “BLACK” is set too high,
the robot may not read as high of a value as the threshold
during the run, which causes it to miss the black line.
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A. Experiment configuration

We plan to conduct experiments for all the calibration
techniques discussed in this paper. The experiment is set up
in the following configuration:

• Data sample size: 200
• Repeat the following experiment for 10 times:

– Repeat following steps 100 times:

1) Calibration run: Run through one black line on
the white surface and calibrate the tophat sensor,
then drive back to the base line.

2) Test run: Run through the same black line again,
reporting whether a black line is seen.

– Calculate the success rate of identifying BLACK and
output the sample data logs.

Each experiment contains 100 repetitions, and each repeti-
tion contains a calibration run and a test run. We then repeat
the experiment 10 times. We do this instead of running the
experiment 1000 times because we want to output all of the
data before our robot runs out of battery. We need the sample
data for analysis. In fact, we observed similar results from all
10 experiments, so we randomly chose one experiment data
set to analyze in the rest of this paper.

The code snippet is shown below:

1 double cnt_black = 0;
2 double cnt_runs = 100;
3 for (int i = 0; i < cnt_runs; i++) {
4 //calibrate_tophats();
5 calibrate_tophats_w_clustering();
6

7 // drive back to base
8 drive(-1500, -1500);
9 msleep(2000);

10 drive(0, 0);
11

12 int saw_black = 0;
13 int read_rate = 10;
14

15 // Drive for 2 seconds, read tophat every
16 // 10ms and check whether it’s BLACK
17 drive(1500, 1500);
18 double start_time = seconds();
19 while (fabs(seconds() - start_time) < 2) {
20 if (seeBlackAlg1() > 0) {
21 saw_black++;
22 }
23 msleep(read_rate);
24 }
25 drive(0, 0);
26 if (saw_black) {
27 cnt_black = cnt_black + 1.0;
28 }
29

30 // drive back to base
31 drive(-1500, -1500);
32 msleep(2000);
33 drive(0, 0);
34 }
35

36 printf("saw black %f\n", cnt_black/cnt_runs);

Listing 1: Experiment code

B. Metrics

We will evaluate all the algorithms in the next two metrics
and compare their effectiveness.

• Success rate
• Graph showing the identified threshold among all sample

data

III. CALIBRATION ALGORITHMS AND EXPERIMENT
RESULTS

A. Calibration algorithm 1: 90%ile sample

Our previous method (which we used for the 2025 NC
regional tournament) for calibration involved collecting raw
sensor readings over a fixed interval and sorting the data. Then
we would take the 90th percentile of the data to eliminate the
outliers in the data to calculate the threshold to determine
whether the sensor has read a “BLACK” value. Below is a
code snippet to determine whether we see BLACK:

1 int seeBlackAlg1() {
2 if (analog(LEFT_TOPHAT) >= BLACK_VAL) {
3 return 1;
4 }
5 else {
6 return 0;
7 }
8 }

Listing 2: Algorithm 1 of determining BLACK

Fig. 1 below visualizes how the BLACK threshold is set.

Fig. 1: Sample data of a successful run.

This algorithm is simple and intuitive, and works the ma-
jority of the time. However, the threshold set by this algorithm
is vulnerable to sample data noise. Out of our 100 test runs,
the threshold shows a large fluctuation (in Fig. 2).

When the sample data set is significantly skewed (which
is what happened during the NC regional tournament), the
threshold may be too high or too low and could cause the
robot to miss a black line or read “BLACK” when there is
not actually a black line.

As shown in Fig. 3, this algorithm had a success rate of
92% in this experiment.

2



Fig. 2: Algorithm 1: calibrated values for WHITE and
BLACK.

Fig. 3: Experiment result for Algorithm 1: succcess rate

B. Calibration algorithm 2: median of the 80%ile data range

The second calibration method that we came up with after
the regional tournament was to use the middle 80% of the data.
We would first sort all the sample data in ascending order,
define white and black as the 10th percentile and the 90th
percentile respectively, then average “WHITE” and “BLACK”
to calculate the threshold, as shown in the following code.

1 int seeBlackAlg2() {
2 int read = analog(LEFT_TOPHAT);
3 if (fabs(read - WHITE_VAL) >= fabs(read -

BLACK_VAL)) {
4 return 1;
5 }
6 else {
7 return 0;
8 }
9 }

Listing 3: Algorithm 2 of determining BLACK

Fig. 4 shows how Algorithm 2 sets the threshold. In the
same experiment run, Algorithm 2 sets the threshold to 1262
instead of 2372 used by Algorithm 1.

Fig. 4: Algorithm 2 chooses a different threshold in the same
sample.

Compared to the previous algorithm, this algorithm is more
accurate, since averaging the two values lowers the threshold
and gives us more room for error. Fig. 5 demonstrates how
Algorithm 2 is more effective than Algorithm 1 and avoided
some super noisy data samples. However, Fig. 5 shows when
the sample data is extremely skewed, this algorithm still has
the same problem as the previous algorithm, as an error in the
sample data may cause an unproportionate threshold value.
This algorithm had a 98% success rate in our experiment.

Fig. 5: Algorithm 2: using mean of WHITE and BLACK vs
using BLACK only.

C. Calibration algorithm 3: K-Means clustering
The final calibration method we came up with is clustering,

a classic Machine Learning technique. We would cluster all
sample data into two groups, one representing WHITE and one
representing BLACK. Then we would take the mean value of
each cluster as the value for WHITE or BLACK, respectively.
After identifying WHITE and BLACK, the algorithm for
creating the threshold was the same as Algorithm 2(taking the
mean of WHITE and BLACK). Compared to the percentile
method, clustering is more accurate, as it is not affected by
how data is distributed between the two groups(WHITE and
BLACK), thus it can handle the skewed data better.

There are many existing clustering algorithms, such as K-
Means[5], Hierarchical Clustering[6], Density-Based Spatial
Clustering[7], Mean Shift Clustering[8], etc. Since we only
have 1-dimensional data and two clusters, Ikotun’s literature
review[9] suggested that the K-Means algorithm would be the
simplest and works the best for our use case.

The K-Means algorithm starts with two centroids and
repeatedly assigns each data point to the closest centroid
until convergence. The cluster with the larger mean becomes
“BLACK” and the cluster with the smaller mean becomes
“WHITE”. The following code is the version of K-Means that
we used in this experiment.

1 int K = 2;
2 while (changed && iter < MAX_ITER) {
3 changed = 0;
4

5 // Assign each data point to the closest
centroid
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6 for (int i = 0; i < size; i++) {
7 int dist0 = abs(data[i] - centroids[0]);
8 int dist1 = abs(data[i] - centroids[1]);
9

10 int new_label = (dist0 < dist1) ? 0 : 1;
11

12 if (labels[i] != new_label) {
13 labels[i] = new_label;
14 changed = 1;
15 }
16 }
17

18 // Recalculate centroids
19 float sum[K] = {0.0};
20 int count[K] = {0};
21

22 for (int i = 0; i < size; i++) {
23 sum[labels[i]] += data[i];
24 count[labels[i]]++;
25 }
26

27 for (int k = 0; k < K; k++) {
28 if (count[k] > 0) {
29 centroids[k] = (int)(sum[k] / count[k]);
30 }
31 }
32

33 iter++;
34 }

This method is much more accurate than the other two
in small sample data sizes, where there is a greater chance
of error. As shown in Fig. 6, both the percentile technique
and the clustering technique generate similar curves in all
three metrics: WHITE, BLACK and the threshold. In fact, the
majority of time, all three algorithms work the same, though
Algorithm 3 has smoother curves in all metrics compared
to the other two algorithms. That means that Algorithm 3
is more stable and reliable, in addition to handling several
extreme cases very well, achieving a 100% success rate in our
experiments.

Fig. 6: Algorithm 3: use K-Means to cluster WHITE and
BLACK, then use the mean as threshold.

Taking a closer look at Fig. 6, we can see that in several
corner cases where the sample data was significantly skewed,
Algorithm 3 out performed the other two algorithms. We will
analyze these corner cases in details in the next section.

IV. CORNER CASE ANALYSIS

A. Corner Case 1: data is largely skewed towards WHITE

Fig. 7: Corner Case 1: data is skewed towards WHITE

The sample data in this case has 90% WHITE and 10%
BLACK (Fig. 7). That happened to place the 90%ile data at a
low reading of 1054, which caused the percentile threshold to
become 602. This error could cause the robot to read a false
BLACK on a grey area instead of a black line.

In contrast, the clustering technique was able to identify
the 19 data samples of BLACK (Fig. 8), and only use these
19 data points to calculate the BLACK value. As a result, the
clustering technique generated a reasonable threshold of 1121.

Fig. 8: Corner Case 1 data

B. Corner Case 2: data is largely skewed towards BLACK

The sample data set in this case was extremely skewed, with
only two WHITE data points (Fig. 9).

Fig. 9: Corner Case 2 data

The percentile technique ignored the two WHITE data
points because they fell out of the 10% percentile and were
eliminated. That caused both the values of WHITE and
BLACK to be evaluated to BLACK values, which further

4



Fig. 10: Corner Case 2: data is skewed towards BLACK

caused the robot to output a very high threshold of 2591 for
Algorithm 1 and 2220 for Algorithm 2.

Both Algorithm 1 and Algorithm 2 failed to find a black
line during the experiment, while the clustering technique
successfully isolated the WHITE data from the rest data and
calculated a reasonable threshold of 1463 (Fig. 10).

C. Corner Case 3: invalid sample, only BLACK or only
WHITE

We found one experiment run in which all algorithms failed
to find a black line (Fig. 11). All of sample data points were
BLACK, thus neither the percentile nor clustering methods
could identify WHITE and generate a valid threshold. We
decided that this was not a valid run, and should not be counted
towards the success rate of each algorithm.

Fig. 11: Corner Case 3: invalid sample, only BLACK or only
WHITE

V. COMPARE ALL THREE CALIBRATION TECHNIQUES

A. Reliability

Based on the calibration techniques and their graphs, we
can compare each algorithm to determine the most effective
approach for identifying the threshold between WHITE and
BLACK values.

Algorithm 1, which uses the 90th percentile of the BLACK
values directly as the threshold, is the simplest and fastest
method. However, its performance is highly sensitive to out-
liers in the BLACK data, and as shown in Fig. 10, this method
selects a threshold that is too high and causes the calibration
to fail. While it may perform well in ideal conditions, such as
the successful run shown in Fig. 1, it becomes unreliable when
sensor data is noisy or lacks a distinct difference between the
two values.

Algorithm 2 is a refined version of Algorithm 1, as it
averages the mean values of WHITE and BLACK data to
determine the threshold. This method allows for a much larger
margin of error, as the threshold it chooses is much more
evenly spread between the two values. However, this method
still assumes a relatively clean input and can be skewed if
either WHITE or BLACK values are inconsistent or contain
significant noise.

Algorithm 3 is much more efficient, especially in data sets
with lots of noise, since it clusters the values without relying
on a pre-sorted data set. This reliability is demonstrated in
Fig. 6, as there are no extreme variations in the data and
the difference in the data values are all very distinct. Thus,
Algorithm 3 is the most flexible and accurate of the tested
approaches.

Table I shows the comparison among the three algorithms
in terms of their success rate of identifying BLACK. Among
them, all of the algorithms have a success rate over 90%.
Algorithm 2 is substantially more accurate than algorithm 1,
though it still cannot handle the corner cases. On the other
hand, Algorithm 3 is much smoother and resistant to noisy
data, which allows it to be more reliable and able to withstand
the corner cases.

Besides the performance of identifying BLACK, there is
another risk at opposite direction: false BLACK. When data
is extremely skewed towards WHITE (corner case 1), both
algorithm 1 and 2 read a false BLACK while algorithm 3
does not.

Algorithm Success Rate Risk for False Black?
Algorithm 1 92% Yes
Algorithm 2 98% Yes
Algorithm 3 100% No

TABLE I: Comparison of 3 calibration algorithms

B. Complexity

The percentile technique (Algorithm 1 and 2) needs to sort
all the sample data read by the tophat sensor. We used Quick
Sort in our robot. The time complexity of a Quick Sort is
O(n ·Logn)[10], where n is the data size. Cormen suggested
in his book that the time complexity of Quick Sort would not
change even when the data had already been sorted.

The time complexity of the K-Means algorithm is O(n · i),
where i is the number of iterations until convergence. In our
case, the robot uses tophat sensor to read data from WHITE to
BLACK, then WHITE, or vice versa. There is a pattern in the
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sample data, which means our sample data is already semi-
sorted. The K-Means algorithm converges much faster using
semi-sorted data[11], typically within 5 iterations. This means
that when n is large, the effective time complexity is O(n),
so the clustering technique also has better efficiency than the
percentile technique in terms of running time.

VI. ENHANCEMENTS AND FUTURE DIRECTIONS

In the above sections, we used our experiment results to
analyze all three calibration techniques. However, there are
cases that our experiment did not capture, but could possibly
occur. We call them theoretical errors. One theoretical error
is when the sensor reads faulty data, which could either be
extremely high or extremely low. We do not worry much
about extremely low data, because normally a WHITE reading
is between 150-200, which is close to the minimum value 0
already. A faulty “0” reading will not skew the data that much.
The other faulty possibility, an extremely high value, could
cause two possible issues:

1) Re-clustering issue: The faulty high values become the
BLACK cluster, pushing all the other valid data into the
WHITE cluster.

2) The faulty high values are included in the BLACK
cluster and raise the average value of the cluster, which
further raises the threshold of BLACK.

A. Re-clustering Issue

It is hard to make the sensor generate faulty sensor readings.
We then took some of our experimental sample data, and
deliberately inserted some fake outliers. We want to test
whether the outliers would cause the BLACK and WHITE
be clustered together. Fig. 12 is an extreme example with
low BLACK values, so that we have a large distance between
the outliers and the BLACK samples. However, in all of our
experiments, the outliers never caused the re-clustering issue,
even in the extreme example Fig. 12.

Fig. 12: Insert 2 outliers

According to KIPR[12], the value range of tophat sensors
is [0, 4059]. Thus, the current K-Means method we use can
work for this scenario because the greatest possible value the
sensor can read is not large enough to cause re-clustering. This

is shown in Fig. 13 where we inserted outliers at the maximum
sensor range.

Fig. 13: Outliers cannot push BLACK data into WHITE cluster

Even though this is not an issue for the tophat sensor, it
may become a greater issue for calibration of other sensors,
where the maximum value is much greater than the typical
high value, hence we still need to handle this issue. One way
to solve this issue is to incorporate a data validation step in
the process. We do this by restricting the value range of the
data set(which we hardcode) such that all the outliers in the
sample data are removed, as shown in the code below.

1 if (read >= MIN_VALID && read <= MAX_VALID) {
2 tophat[valid_count] = read;
3 valid_count++;
4 }

Listing 4: Data validation

B. Faulty High Threshold Issue

When an extremely high faulty value(an outlier) is included
within the BLACK cluster, it directly increases the cluster’s
average value, which will consequently raise this threshold.

In our new code(shown below), we calculate the value of
“BLACK” by taking the median of the cluster instead of the
mean. As shown in Fig. 14, using the mean of the data set
results in a value of 2232, which is higher than all of the
accurate black values. On the other hand, using the median
gives us a reasonable value of 2046.

However, this new method has a drawback in that finding
the median of the data set requires sorting of the sample data,
which will increase the time complexity.

1 // Determine BLACK_VAL and WHITE_VAL
2 int count_black = 0;
3

4 // Find the label for BLACK
5 int black = (centroids[1] > centroids[0]) ? 1 : 0;
6

7 // Count the BLACK sample data
8 for (int i = 0; i < size; i++) {
9 if (label[i]) == black) count_black++;

10 }
11

12 // Sort all sample data
13 qsort(tophat, SAMPLE_SIZE, sizeof(int), compare);
14

15 // Calculate the indices of the median BLACK and
median WHITE

16 int black_median = (SAMPLE_SIZE - count_black) +
count_black / 2;

17 int white_median = (SAMPLE_SIZE - count_black) / 2;
18

19 BLACK_VAL = tophat[black_median];
20 WHITE_VAL = tophat[white_median];
21

22 printf("vals: [%d %d]\n", WHITE_VAL, BLACK_VAL);

Listing 5: Code determining values of BLACK and WHITE
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Fig. 14: Hyrbrid approach generates better BLACK threshold

C. Other Enhancements

A possible enhancement to the current K-Means clustering
technique involves improving how the initial centroids are
chosen. Our current K-Means algorithm sets initial centroids
using the first two sample data. If we can set the initial
centroids to the smallest and largest values in the dataset,
the algorithm can converge much faster. Since the sensor
data typically follows a WHITE-BLACK-WHITE pattern as
the robot crosses a line, we can set the initial centroids to
the values in the beginning and middle, respectively. This
enhancement reduces the number of iterations needed to
converge and increases the efficiency of the code.

VII. CONCLUSION

In this paper, we identified the issue behind errors in
previous methods of calibration, experimented with three
different methods, and proposed a simple machine learning-
based calibration technique. Through various experiments, we
showed that this K-Means clustering method outperformed
other techniques, and can achieve 100% success rate of
identifying “BLACK” from “WHITE”.

The clustering technique proposed in this paper can be
applied in various analog sensors and use cases. For example,
the K-Means algorithm can identify more than two clusters.
It can also be used to calibrate the camera readings, such as
identifying different colors or seeing whether the object we
detect is a large building or a small building (depending on the
number of pixels). In future work, we will apply this algorithm
in other areas of Botball and evaluate its effectiveness.

To further improve the sensor calibration, we can consider
using more advanced machine learning techniques such as
linear regression to cluster the data. Unlike the other threshold-
based methods, machine learning models can take more inputs
(called features to the model), such as robot driving speed, and
achieve more accurate calibration. This approach can allow for
more flexibility that has the potential to significantly benefit
the accuracy of our robots.
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