
Real-Time Control of Multiple Servo Motors
Rocky Ratia

Abstract — Moving a servo motor at a set

speed which is not the maximum speed can be
achieved with relative ease. However, many ways
involve stepping the servo, which in turn will
force the program to halt until the desired
position is reached. With the short limit of 2
minutes, waiting for each servo to move to the
goal position can take up a lot of time. This
paper explores various methods of simultaneous
servo control. Through a series of experiments,
the author compares the effectiveness of different
methods and shows that utilizing the Wombat’s
multithreading ability can greatly improve the
flexibility and control of multiple servo motors.

I. Introduction

Autonomous robots are programmed and
designed to complete various tasks accurately and
repeatedly. Because most designs and strategies
account for one robot performing multiple tasks, and
because of the nature of some tasks, teams tend to
use some form of arm mechanism.

II. Types of Arms

Simpler arm mechanisms are usually a form of

rotating arm. The most common and user inclusive
design is a 1-DOF revolute joint manipulator [1].
However, some tasks require a grabbing mechanism
to stay upright. The two common ways to do this are
to add a joint to the arm near the claw, or to use a
shifting parallelogram. In the case of adding a joint,
the arm now becomes a 2-DOF planar articulated
manipulator in RR configuration. ‘R’ means revolute
joint, therefore an arm in RR configuration would
have 2 revolute joints. In a more advanced robot,
the arm pivots in place. To achieve this, the arm can
be mounted on a servo motor. The arm is now a
3-DOF articulated robotic arm in RRR configuration
[2].

To control an arm that has 2 or more articulatory
servo motors, the program now needs to control two
servos for the arm with a joint, one being the joint
and the other being the base. In the case of the
pivoting arm, the program will need to be able to
control 3 servos simultaneously. The bearing, (or
pivot), the base, and the joint.

III. The Environment

 The controller given is the Wombat, which uses a
Raspberry Pi 3B+ for its main computing. Powered
by a quad-core ARM Cortex-A53 processor at 1.4
GHz, the Pi offers a decent balance between
performance and efficiency [3]. With a 4 core
processor, the Pi is capable of modest
multithreading. Using the given OS thread
scheduling ability, the Pi is more than capable of
running parallel tasks.

IV. Mechanical Structure

 The arm needs to be operable by any of the
servos in use. If even one of them fails, the stepping
program will have no way to determine the failure
without complex use of sensors. This greatly limits
the possible design; as the torque range of the
standard issue servo at 6 volts is ~11 kg · cm.

Fig. 1. The equation for finding torque for a given two
linkage arm [4].

 Using the measurements of 20 cm for the first
arm linkage and 24 cm for the second arm linkage,
the maximum torque put on the servo is about 10
kg·cm with rounding. Because this torque is within
the servo’s operating range, and that the load
decreases along upper linkages of the arm, the base
and joint servos can safely operate within their
limits.

V. Servo Operation

 In addition to a stable, operable hardware
structure, advanced programmatic logic is required
to prevent undesirable, sudden movements that can
add to the servo’s workload and possibly damage the
arm. The provided function for moving a servo,
set_servo_position, on its own, is
undesirable for this use case as it forces the servo to
jump to the position. This is not a slow, graceful
movement, more like a jerky sudden shift. To slow
down the servo, a widely used method is to “step”
the motor, or loop through positions and move the
servo by smaller increments. There are two ways to
do this using loops, a ‘while’ loop or a ‘for’ loop.
Either of these is a valid way to step the servo.
 For a revolute joint manipulator, without joints
separating the base from the claw mechanism, this
method would be well suited for the purpose of not
damaging the arm. However, for arms with more
complex joints, such as the 2-DOF and 3-DOF
articulated arms, this method can add a lot of timing
issues, particularly if the game plan the robot is
being designed for requires completion of many
tasks, with little room for error or time flexibility.
Moving each joint one at a time would not only be
cumbersome, but would also add extra stress on
some motors as the joint(s) above them are actuated.

VI. Programmatic Synchronisation

 To be able to step two joints at any given
moment, without forcing the program to halt in a
loop, there are several options available, namely
timer based state machines, fire and forget threading,
and multi threading. Each of these methods has both
advantages and disadvantages.

 A timer based state machine is a type of state
machine where transitions between states are driven
by time. In the case of a more complex arm, this
method could be to set multiple positions of servos
at regular intervals, though this would require
precise calculation of the step rate of the motor. The
advantage to this would be that this is a more
simpler, failproof way of controlling the arm. A key
disadvantage would be the calculation required, and
the careful tuning needed to properly synchronise
the arm.
 Another way to control this arm, would be to use
fire and forget threading. Fire and forget threading is
when a program starts a thread, and leaves it to run
in the background without acknowledging it for
future reference. A key advantage to this would be
that the program can create several threads,
synchronously controlling the arm, without blocking
the main program allowing it to control other
important aspects of the program, such as driving or
sensor reading. A disadvantage would be that
because the thread has been created and “forgotten”,
hence the name fire and forget, concurrent
modification of servo positions can result in serious
damage to the servo and to the arm mechanism.
Essentially, the servo will be stepped to two different
positions, each at increasingly large distances from
each other.
 Multithreading is quite similar to fire and forget,
however it has more refined control. By keeping
track of created threads, the program can halt one
thread in favor of the most recent position goal to
prevent the concurrent position modification seen in
fire and forget. This refined control allows for better
timing, synchronisation, and speed control of the
arm.

Fig. 1. An outline of a function for control of multiple servos, using a timer based state machine.

VII. Implementation

 The implementation of each of these methods
ranged from relatively simple to quite complex. The
timer based program was by far the simplest, using a
basic while loop, to simultaneously set the positions
of two or more servos at the same time. As shown in
Fig. 1, transitions in states, namely changes in servo
position are driven by time, in this case the sleep
function call at the end. This will still halt the
program, however, until the while loop finishes.
Another disadvantage is that because the movement
for both motors is inside the same while loop, the
function is less flexible with individual motor speed
control.
 For fire and forget threading, the implementation
is more complex. To even start controlling the arm
using this method, it is imperative to first understand
KIPR’s threading system.

Fig. 3. A basic example of threading use is shown.

In Fig. 3, a key observation is that the threading
system runs a thread from a function. After
thread_start is called, everything in that

function will run separately from the main program.
For example, if from Fig. 3 the contents of the void
function do_something is replaced with
while(1) msleep(1000) or another form of
forever loop, the program would not halt. Instead, it
would run as normal. Threads run parallel to the
main program. The thread still has access to servo
control.

Fig. 4. A basic implementation of moving a servo using
threading

If the code from the timer based state machine,
namely the while loop, is adapted to run a single
servo motor, and this new loop is packed into a
thread function, the thread can now step the servo
without blocking the program. This can be seen in
Fig. 4, which is a basic outline to move a servo to a
position in a nonblocking manner. However, threads
do not support passing in function parameters. This
makes sending the goal position of the servo much
more complex.

Fig. 5. An incorrect implementation of moving a servo.
This will not work.

Code from Fig. 5 will result in a compiler error. To
get around the lack of passing function arguments,
variables can be used. Because the threads execute
functions, global variables can pass values into the
threads. Implementing this, where the function that
is called to move the servo sets these variables the
calls the threads,

Fig. 6. A basic implementation of fire and forget
threading.

In Fig. 6, notice how the step_servo function
never waits for the servos to reach their position.
This can be a goal but also not desired, as in some
cases the program is required to wait for the arm to
finish moving. An implementation of a basic wait
mechanism is through more use of global variables.

Fig. 7. Implementation of a completion mechanism.

Fig. 7 shows how such a completion mechanism can
be implemented. The builtin function
thread_wait halts the program until the thread
has finished. This, in and of itself, is a form of
completion mechanism. Another function parameter
can be added to declare whether the completion
delay is desired, but this is a basic outline. Using the
code from Fig. 7, the thread variables are declared
inside of the function. For fire and forget threading,
this is acceptable. However, for multithreading, this
is unwanted. That is because multithreading requires
prolonged access for the same thread. By declaring
threads outside of any function, their persistence is
ensured and access is universal. Speed adjustments
and arm position interrupts can also be used, as well
as moving the arm while driving the bot. Fig. 8 gives

an example of this implementation.

Fig. 8. Implementation of advanced thread control,
motion thread interrupts, and universal threading access.
Note that the threads need to be declared after functions
like operate_servo that they rely on.

VIII. Testing

 Through testing the arm’s response to various
methods, the most effective, safest, and fastest
method was the use of multithreading. The timings
for each of the motors is a big issue. With the timer
based method, 2 of the servo motors operating the
arm can reach their goal position, with one still
moving. This would halt the program for one motor.
Implementing further logic into a structure similar to
that of Fig. 8 can resume the program when one
servo is close enough to its goal position. This could
even be done for fire and forget, though persistent
thread control logic would make that some version
of multithreading. The testing method used to
determine efficiency was having a robot with a 3
DOF arm attached, and timing each of the 3
methods.

Fig. 9. The robot used in the tests.

Each method was run a total of 5 times. A higher
speed camera was used to record every run, and each
run the goal arm position stayed consistent. Each
servo on the arm was required to turn to a different
position.

Fig. 10. Results from the five tests covering each method.
The vertical axis is the time (in seconds) required for the
arm to move to the goal position. The goal position and
starting stayed constant over these tests.

As seen in Fig. 10, the timer based control system
was more inefficient. The reason for this was that
because every servo had a different position, the
program would need to wait for the last servo. Fire
and forget featured better servo speed management,
but the issue of needing to wait for the arm was still
prevalent. Multithreading had the feature of only
waiting for the more dominant servos to finish their
goal, saving larger amounts of time. It also allowed
for even better speed control, and acceleration.

Acceleration was not possible with fire-and-forget,
because it required persistent thread access to adjust
speeds.

IX. Conclusion

 Real time control of multiple servo motors is
essential for operating a variety of arm designs.
There are many methods of synchronous control,
ranging from timer based methods to
implementations of threading. Timer mechanisms
use timing to transition between arm states. One
method of threading, fire and forget, can use the
Wombat’s threading functionality to control the arm,
and finally multithreading uses more advanced
threading to control speed and handle multiple calls
to the arm. Every method has advantages and
disadvantages. Timer based methods are often
simpler, easier to implement, and straightforward to
debug. This method can be more rigid in arm speed
and timing. Fire and forget features more complex
control schemes, and also a more nonblocking
manner than a timer based method. A key
disadvantage is that attempts to step the servo at the
same time to different positions can lead to sudden,
and possibly damaging movements. Multithreading
offers ways to interrupt the threads, preventing this
issue. It also offers acceleration of servo, more
options for complex movement patterns, and more
flexibility in speed of individual motors. The biggest
disadvantage is its complexity, and difficulty to

implement. All in all, synchronous control of
multiple motors is required for complex autonomous
robots, such as in Botball, that feature more
compound mechanisms.

Acknowledgements

 The author would like to thank Coach Harsukh,
the members of Botball Team 328, and the members
of Etheris for hosting this publication.

References

[1] M. W. Spong, S. Hutchinson, and M. Vidyasagar,

Robot Dynamics and Control. New York, NY,
USA: Wiley, 2005.

[2] J. J. Craig, Introduction to Robotics: Mechanics
and Control, 3rd ed. Upper Saddle River, NJ,
USA: Pearson, 2004.

[3] Raspberry Pi Ltd., “Raspberry Pi 3 Model B+,”
Raspberry Pi, [Online]. Available:
https://www.raspberrypi.com/products/raspberry-
pi-3-model-b-plus/. [Accessed: Jun. 11, 2025].

[4] "7.5: Torque," Physics LibreTexts, University of
California Davis, Aug. 13, 2020. [Online].
Available:
https://phys.libretexts.org/Courses/University_of
_California_Davis/UCD%3A_Physics_7B_-_Ge
neral_Physics/7%3A_Momentum/7.5%3A_Torq
ue. [Accessed: Jun. 11, 2025].

https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_7B_-_General_Physics/7%3A_Momentum/7.5%3A_Torque
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_7B_-_General_Physics/7%3A_Momentum/7.5%3A_Torque
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_7B_-_General_Physics/7%3A_Momentum/7.5%3A_Torque
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_7B_-_General_Physics/7%3A_Momentum/7.5%3A_Torque
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_7B_-_General_Physics/7%3A_Momentum/7.5%3A_Torque

